Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Low-temperature processed Ga-doped ZnO coatings from colloidal inks.

Identifieur interne : 000562 ( Main/Exploration ); précédent : 000561; suivant : 000563

Low-temperature processed Ga-doped ZnO coatings from colloidal inks.

Auteurs : RBID : pubmed:23394063

English descriptors

Abstract

We present a new colloidal synthesis of gallium-doped zinc oxide nanocrystals that are transparent in the visible and absorb in the near-infrared. Thermal decomposition of zinc stearate and gallium nitrate after hot injection of the precursors in a mixture of organic amines leads to nanocrystals with tunable properties according to gallium amount. Substitutional Ga(3+) ions trigger a plasmonic resonance in the infrared region resulting from an increase in the free electrons concentration. These nanocrystals can be deposited by spin coating, drop casting, and spray coating resulting in homogeneous and high-quality thin films. The optical transmission of the Ga-ZnO nanoparticle assemblies in the visible is greater than 90%, and at the same time, the near-infrared absorption of the nanocrystals is maintained in the films as well. Several strategies to improve the films electrical and optical properties have been presented, such as UV treatments to remove the organic compounds responsible for the observed interparticle resistance and reducing atmosphere treatments on both colloidal solutions and thin films to increase the free carriers concentration, enhancing electrical conductivity and infrared absorption. The electrical resistance of the nanoparticle assemblies is about 30 kΩ/sq for the as-deposited, UV-exposed films, and it drops down to 300 Ω/sq after annealing in forming gas at 450 °C, comparable with state of the art tin-doped indium oxide coatings deposited from nanocrystal inks.

DOI: 10.1021/ja307960z
PubMed: 23394063

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Low-temperature processed Ga-doped ZnO coatings from colloidal inks.</title>
<author>
<name sortKey="Della Gaspera, Enrico" uniqKey="Della Gaspera E">Enrico Della Gaspera</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Ingegneria Industriale, Università di Padova, Via Marzolo, 9, 35131 Padova, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Ingegneria Industriale, Università di Padova, Via Marzolo, 9, 35131 Padova</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bersani, Marco" uniqKey="Bersani M">Marco Bersani</name>
</author>
<author>
<name sortKey="Cittadini, Michela" uniqKey="Cittadini M">Michela Cittadini</name>
</author>
<author>
<name sortKey="Guglielmi, Massimo" uniqKey="Guglielmi M">Massimo Guglielmi</name>
</author>
<author>
<name sortKey="Pagani, Diego" uniqKey="Pagani D">Diego Pagani</name>
</author>
<author>
<name sortKey="Noriega, Rodrigo" uniqKey="Noriega R">Rodrigo Noriega</name>
</author>
<author>
<name sortKey="Mehra, Saahil" uniqKey="Mehra S">Saahil Mehra</name>
</author>
<author>
<name sortKey="Salleo, Alberto" uniqKey="Salleo A">Alberto Salleo</name>
</author>
<author>
<name sortKey="Martucci, Alessandro" uniqKey="Martucci A">Alessandro Martucci</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2013">2013</date>
<idno type="doi">10.1021/ja307960z</idno>
<idno type="RBID">pubmed:23394063</idno>
<idno type="pmid">23394063</idno>
<idno type="wicri:Area/Main/Corpus">000811</idno>
<idno type="wicri:Area/Main/Curation">000811</idno>
<idno type="wicri:Area/Main/Exploration">000562</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Colloids (chemistry)</term>
<term>Gallium (chemistry)</term>
<term>Ink</term>
<term>Particle Size</term>
<term>Surface Properties</term>
<term>Temperature</term>
<term>Zinc Oxide (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Colloids</term>
<term>Gallium</term>
<term>Zinc Oxide</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ink</term>
<term>Particle Size</term>
<term>Surface Properties</term>
<term>Temperature</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present a new colloidal synthesis of gallium-doped zinc oxide nanocrystals that are transparent in the visible and absorb in the near-infrared. Thermal decomposition of zinc stearate and gallium nitrate after hot injection of the precursors in a mixture of organic amines leads to nanocrystals with tunable properties according to gallium amount. Substitutional Ga(3+) ions trigger a plasmonic resonance in the infrared region resulting from an increase in the free electrons concentration. These nanocrystals can be deposited by spin coating, drop casting, and spray coating resulting in homogeneous and high-quality thin films. The optical transmission of the Ga-ZnO nanoparticle assemblies in the visible is greater than 90%, and at the same time, the near-infrared absorption of the nanocrystals is maintained in the films as well. Several strategies to improve the films electrical and optical properties have been presented, such as UV treatments to remove the organic compounds responsible for the observed interparticle resistance and reducing atmosphere treatments on both colloidal solutions and thin films to increase the free carriers concentration, enhancing electrical conductivity and infrared absorption. The electrical resistance of the nanoparticle assemblies is about 30 kΩ/sq for the as-deposited, UV-exposed films, and it drops down to 300 Ω/sq after annealing in forming gas at 450 °C, comparable with state of the art tin-doped indium oxide coatings deposited from nanocrystal inks.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23394063</PMID>
<DateCreated>
<Year>2013</Year>
<Month>03</Month>
<Day>07</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>09</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5126</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>135</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2013</Year>
<Month>Mar</Month>
<Day>6</Day>
</PubDate>
</JournalIssue>
<Title>Journal of the American Chemical Society</Title>
<ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation>
</Journal>
<ArticleTitle>Low-temperature processed Ga-doped ZnO coatings from colloidal inks.</ArticleTitle>
<Pagination>
<MedlinePgn>3439-48</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/ja307960z</ELocationID>
<Abstract>
<AbstractText>We present a new colloidal synthesis of gallium-doped zinc oxide nanocrystals that are transparent in the visible and absorb in the near-infrared. Thermal decomposition of zinc stearate and gallium nitrate after hot injection of the precursors in a mixture of organic amines leads to nanocrystals with tunable properties according to gallium amount. Substitutional Ga(3+) ions trigger a plasmonic resonance in the infrared region resulting from an increase in the free electrons concentration. These nanocrystals can be deposited by spin coating, drop casting, and spray coating resulting in homogeneous and high-quality thin films. The optical transmission of the Ga-ZnO nanoparticle assemblies in the visible is greater than 90%, and at the same time, the near-infrared absorption of the nanocrystals is maintained in the films as well. Several strategies to improve the films electrical and optical properties have been presented, such as UV treatments to remove the organic compounds responsible for the observed interparticle resistance and reducing atmosphere treatments on both colloidal solutions and thin films to increase the free carriers concentration, enhancing electrical conductivity and infrared absorption. The electrical resistance of the nanoparticle assemblies is about 30 kΩ/sq for the as-deposited, UV-exposed films, and it drops down to 300 Ω/sq after annealing in forming gas at 450 °C, comparable with state of the art tin-doped indium oxide coatings deposited from nanocrystal inks.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Della Gaspera</LastName>
<ForeName>Enrico</ForeName>
<Initials>E</Initials>
<Affiliation>Dipartimento di Ingegneria Industriale, Università di Padova, Via Marzolo, 9, 35131 Padova, Italy.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Bersani</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cittadini</LastName>
<ForeName>Michela</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guglielmi</LastName>
<ForeName>Massimo</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pagani</LastName>
<ForeName>Diego</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Noriega</LastName>
<ForeName>Rodrigo</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mehra</LastName>
<ForeName>Saahil</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Salleo</LastName>
<ForeName>Alberto</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martucci</LastName>
<ForeName>Alessandro</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>02</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Am Chem Soc</MedlineTA>
<NlmUniqueID>7503056</NlmUniqueID>
<ISSNLinking>0002-7863</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Colloids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>CH46OC8YV4</RegistryNumber>
<NameOfSubstance>Gallium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SOI2LOH54Z</RegistryNumber>
<NameOfSubstance>Zinc Oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Colloids</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Gallium</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Ink</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Particle Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Zinc Oxide</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>2</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/ja307960z</ArticleId>
<ArticleId IdType="pubmed">23394063</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000562 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000562 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23394063
   |texte=   Low-temperature processed Ga-doped ZnO coatings from colloidal inks.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23394063" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024